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Abstract

The problem of multi-object tracking is particularly in-
teresting in the scope of videos containing multiple camera
angle switches. We follow the approach of Lin and Hung
in A Prior-Less Method for Multi-Face Tracking in Un-
constrained Videos” [4)] to develop a prior-less multi-face
tracking system for use in unconstrained videos. Results
achieved with this system closely approximate the results of
Lin and Hung. We then edit two components of the system as
put forward by Lin and Hung, namely the tracklet generator
and the feature extractor. Doing so allows us to observe ex-
perimentally that the quality of the tracklet generator, and
necessarily the face or body part detector, used in our sys-
tem has the largest effect on the performance of the system.
We conclude that the tracklet generator and associated ob-
ject detector of a multiple object tracking system have the
greatest impact on performance of that system.

1. Introduction

The purpose of a multiple-object tracking (MOT) system
is to accurately track a number of suspects in a video. As
opposed to single-object tracker, the system must maintain
some identifying information about the subjects it is track-
ing. A multiple-object face tracking system must be able to
accomplish this for faces in a video. A prior-less multiple-
object face tracking system must be able to do so without
any preliminary information. In this paper, we also assume
the video is unconstrained, meaning it may feature multiple
camera angle switches or camera movements.

1.1. Applications

The applications of a robust system as described above
are plenty. The current primary focuses of development are
surveillance applications. However, any system that must
maintain location of an individual over time can benefit
from a strong multiple face tracker. These include sports-
analytics applications, business-analytics applications (e.g.
the number of times one customer returns to one part of a
store), etc.
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Figure 1. A successful tracklet generation.

1.2. Challenges

A robust multi-face tracking system faces several key
challenges. The first is the issue of frequent face occlu-
sion. Even when a subject is in the frame, their face is of-
ten hidden, making identification difficult. Camera-angle
switches, as discussed in this paper, alter the appearance of
faces and make re-identification of subjects challenging as
well. Finally, robust and descriptive methods of represent-
ing faces are not trivial and are an open research question.

1.3. Definitions and Key Terms

Tracklet A tracklet is a series of faces in consecutive frames
belonging to the same person.

Track A track is a collection of tracklets that represents a
single person. Also known as clusters.

Co-occurence Model For our purposes, this is a model that
uses multiple body parts to help continue the tracker during
moments when faces are not captured by the camera or not
detected by the detector, but the person remains in the video
frames. [4]]

1.4. Background and Previous Work

Chung-Ching Lin and Ying Hung’s paper, A Prior-Less
Method for Multi-Face Tracking in Unconstrained Videos,
represents the current state-of-the-art in multi-object track-
ing. Their model uses a co-occurrence model of multiple
body parts to create face tracklets, recursively link them to
form a graph, and extract clusters. These clusters represent



individual identities. Lin and Hung improve on the previ-
ous Tracking Persons-of-interest via Adaptive Discrimina-
tive Features[10] by dismissing the need for video priors,
such as the expected number of people. They further im-
prove upon existing works by building tracklet generating
directly into the system, rather than assuming correct track-
lets are provided. Lin and Hung do not, however, discuss
the relative importance of different aspects of their system,
nor explore alternate feature extractors and tracklet genera-
tors.

1.5. Motivation and Goal

The primary focus of our project is a reimplementation
of the algorithm described in Lin and Hung’s paper in an
attempt to replicate the results of the authors. In so doing,
we had a stable build from which we could modify aspects
of the system in a controlled, experimental fashion. Lin
and Hung propose their own algorithm for tracklet linking
and data association. But, they rely on two external tools
to do so. The first is a body part detector, based on the de-
formable parts model, used for identifying where a person
is in the video. The second is a CNN for feature extraction
to associate faces. We experimented with different body
part and face detectors and different feature extractors and
noted changes in the performance of the algorithm. Such a
study allowed us to experimentally show which elements of
a multi-object face tracking system have the most effect on
results and to what extent the system is reliant on a strong
implementation of these components.

1.6. Dataset

We make use of the music video dataset and annotations
published in Tracking Persons-of-interest via Adaptive Dis-
criminative Features|10]. The dataset features music videos
downloaded from YouTube featuring camera angle switches
and a variety of tracking circumstances.

2. Implementation
2.1. Control

The control for this project was the multiple-object face
tracking system as designed by Lin and Hung with the ex-
ception of Gaussian process outlier correction.

2.1.1 Tracklet Generating

We began by using OpenPose [7], a publicly available,
open source body pose estimator library to extract body and
face keypoints, with associated confidences, for each video
in our dataset. We connected major adjacent keypoints (e.g.
a right wrist and a right elbow) to form lines representing
limbs of the body. We then used the length of the limb to
estimate a width for a bounding box. In this fashion, we
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Figure 2. Tracklet Generating and Linking Visualized

generated bounding boxes around limbs and torsos. To
generate face bounding boxes, we used multiples of inter-
eye distance and eye locations to estimate face position.
We were thus able to build a model of each body visible
in any given frames out of body part bounding boxes as
seen in the top three images of Figure 4. Such a model is
an implementation of the deformable parts model (DPM).
Body confidences were calculated by averaging keypoint
confidences.

Given DPM observations, we compared consecutive
frames of the video. If any one body part (right arm, left
leg, face, etc.) overlapped by a low threshold with the
corresponding body part in the next frame, the correspond-
ing body observations were linked into one tracklet. For
any body observations not linked to existing tracklets, new
tracklets were initialized if our confidence in the body
model exceeded a high threshold.

2.1.2 Tracklet Linking

Once all tracklets were generated, we passed every face
in every tracklet through a VGG16 network trained on the
VGG-Faces dataset [6]. We extracted the 4096-dimensional
vector output of the FC7 layer of this network as a feature
descriptor for each face. Every tracklet now was associated
with a set of feature descriptors. Because a tracklet should
be made up of only one person, these feature descriptors
gave us multiple ways of describing a single person’s face.

The task of linking tracklets was abstracted as a graph
problem. Each tracklet was taken to be an unconnected,
lone vertex in a graph containing all tracklets. Any link be-
tween tracklets made was expressed as an edge in the graph.

Lin and Hung propose two types of tracklet links:



{L;} and {L.} links. To build {L;} links, we needed to
separate the tracklets into two groups based on average face
image resolution of each tracklet. We used k-means with
two centroids to accomplish this task. Then, within the
large group only, we calculated distance between tracklets
as follows:

1. Compare every feature descriptor in one tracklet with
every feature descriptor in the other tracklet and gen-
erate a distance value.

2. Take the minimum of all these distance values to get
the computed distance between two tracklets.

Then within the large group, any tracklets whose inter-
tracklet distance was less than a threshold ‘{L;} threshold’,
were linked.

The other type of link proposed was the {L.} link.
First, all the tracklets, both in the large group and small
group, were placed into coexisting sets. A coexisting
set is defined as a set of tracklets whose frames overlap.
A tracklet may be in multiple coexisting sets. Because
frame indexes overlap in a coexisting set, we know that
tracklets cannot be linked within a coexisting set. The
alternative would imply one person is present twice in the
same frame, which cannot be. Then, within each coexisting
set, a minimum inter-tracklet distance was found. If this
value was below an ‘{L.} threshold’, the tracklets in
the coexisting set were deemed to be too similar, and
that coexisting set was discarded. This prevents false
connections. Then, the remaining coexisting sets were pair-
wise compared, and links were built for tracklets between
the two sets whose distance was below the ‘{ L; } threshold’.

Links were expressed as edges in the graph, so a du-
plicate {L;} and {L.} link between two tracklets did not
cause any problems. Clusters in the graph (groups of
connected tracklets) were then complete tracks and the
program was finished.

2.2. Experimental Modifications
2.2.1 Tracklet Generating

e CNN Face Detector - Faces were detected using dlib’s
CNN face detector [3]. Tracklets were then built using
just the overlap of face bounding boxes generated by
dlib.

e HOG Face Detector - Faces were detected using dlib’s
HOG face detector [3]. Tracklets were then built using
just the overlap of face bounding boxes generating by
dlib.

e OpenPose Keypoints With Radius - Rather than trans-
forming OpenPose pose estimation data to bounding

boxes, we created a circle of a specified radius around
each detected keypoint. Tracklets were generated as
for the DPM model, but instead of overlap of bound-
ing boxes, overlap of keypoint circles was used.

e MTCNN Face Detector - Faces were detected using a
Multi-Task CNN [9]. Tracklets were then built using
just the overlap of face bounding boxes generated by
the MTCNN. We were unable to rigorously test this
approach as it required a large amount of computing
resources.

2.2.2 Tracklet Linking

Instead of using the FC7 layer of VGG16 [8] as the feature
descriptor, we used the “flatten_1" layer of ResNet50 [1]]
and the “classifier” layer of SENet50 [2]. We chose these
three networks as we were able to find instances of each pre-
trained on the same dataset. They each represent state of the
art neural networks. The goal with varying these is not to
determine which is best for the task at hand, but rather to
see if varying the network used for feature extraction makes
a significant impact on results at all. Thus, we will not at-
tempt to analyze the structure or properties of each network
specifically.

2.3. Dependencies

This implementation relies on the following open source
tools, all available via the pip package manager.

e dlib

e mtcnn

e matplotlib

e sklearn

e numpy

e motmetrics

e shapely

e networkx

e keras_vggface

e opencv-python

e tabulate

e tensorflow

3. Evaluation Metrics

We used two metrics from Lin & Hung’s paper to
quantitatively evaluate the performance of our model:
one evaluating our clustering and another evaluating our
tracking. To evaluate clustering, we used a Weighted
Clustered Purity (WCP) [5] metric to measure how well
our model clustered faces based on identities. WCP



Table 1a: Average CLEAR MOT Metrics. Varying Face Detector

Model Recall | | Precision { F1 FAF | MOTA}  MOTP{

CNN & 423 49.4 135 0.433 9.3 50.5
ResNet

HOG & 413 46.0 16.3 0.472 10.5 52.5
ResNet

DPM & 78.1 874 17.2 0.283 624 421
ResNet

Lin & 817 902 853 027 69.2 86.0
Hung

Table 2a: WCP Scores. Varying Face Detector
Model Westlife | Pussycat | Hello Girls Aloud
Dolls Bubble

CNN & 0.97 0.96 0.69 0.87
ResNet

HOG & 0.98 0.96 0.82 0.89
ResNet

DPM & 0.895 0.868 0.982 0.904
ResNet

Lin& 0.86 0.79 0.70 092
Hung

is given as WCP = % ECGC Ne - pe Where N is the
total number of faces detected in the video, n. is the
number of faces in the cluster ceC, C is the total number
of clusters, and p. is the ratio of the largest number of
faces from the same person to n.. Higher WCP scores
indicate better clustering. To calculate the purity of a
cluster, p., we needed to either annotate and give identities
to all face detections by hand or automate the labelling
process. Due to resource and time constraints, we opted
for the latter. Our automated annotation process involved
iterating over every frame and calculating the intersection
over union distance between the predicted detections and
the ground truth bounding boxes in the frame and if a
distance was below a threshold, we labelled the predicted
detection with the identity of the “closest” ground truth box.

To evaluate tracking, we used some of the most
widely accepted evaluation metrics, the CLEAR MOT]10].
The specific metrics used were Recall, Precision, F1, FAF,
MOTA, and MOTP. We chose to omit certain metrics
from Lin and Hung’s paper because those metrics depend
on the number of frames used and due to computational
restraints that will be discussed later, our volume of data
was significantly less than that of the paper’s. Recall is the
ratio of correct detections to total number of ground truth
boxes. Precision is the ratio of correct detections to the sum
of correct detections and false positives. The F1 score is the
ratio of correct detections to the average number of ground
truth and computed detections. FAF is the average number
of false alarms per frame. MOTA, or Multiple Object
Tracking Accuracy, is a measurement that combines three
error sources: false positives, missed targets, and identity
switches. MOTP, or Multiple Object Tracking Precision,
measures the misalignment between the annotated and the
predicted bounding boxes. Good performance relates to
high Recall, Precision, F1, MOTA, and MOTP scores and
low FAF scores.

4. Results and Analysis
4.1. Replication of Lin & Hung

Our results for the framework using a deformable parts
model approximately replicated that of Lin & Hung’s. Ta-
ble 1a shows that recall, precision, and FAF were within
3 or 4 points of Lin & Hung’s results. While our MOTA
score may seem a bit off from Lin & Hung’s score, Table
1b shows that if we use a different feature extractor, we can
get results very close to Lin & Hung’s. Furthermore, Table 3
shows that some videos, such as Darling and Hello Bubble,
showed better or closer results to Lin & Hung’s, showing
how much of an impact the properties of different videos
can have on the performance of the system. In Table la
and 1b, our F1 and MOTP scores were significantly worse
than Lin & Hung’s because of how limited our ground truth
detections were. Recall that F1 is the ratio of correct detec-
tions to the average number of ground truth and computed
detections and MOTP measures the miaslignment between
the annotated and predicted bounding boxes. Lin & Hung
offered ground truth bounding boxes for the videos used,
however these ground truth boxes were only for the main
singers in each video. In reality, the videos contained many
background members, such as the audience, that our model
detected and because these predicted bounding boxes don’t
have corresponding ground truth boxes, our F1 and MOTP
scores are going to be worse than Lin & Hung’s.

4.2. A Note On OpenPose Keypoints With Radius

We initally used OpenPose Keypoints With Radius, as
described in the implementation section, in our project.
However, the generated tracklets performed extremely
poorly in our initial testing, so we decided not to continue
with extensive testing of the method. As opposed to bound-
ing boxes, keypoint circles occupy a circular in space, rather
than a rectangular region. Thus, high percentage overlaps
with other, unrelated keypoints are more likely than for
bounding boxes. Because we build tracklets by using the
maximum overlap of any keypoint, erroneous tracklets were
generated very frequently with this method. We can con-
clude that a DPM model with bounding boxes is signifi-
cantly more effective than a keypoints-overlap model.

4.3. Varying Face Detectors
4.3.1 Tracking

The results from the CNN and HOG face detectors, as
shown in Table 1a, are significantly worse than those of the
DPM model and Lin & Hung’s framework. This is because
the detections from the CNN and HOG face detectors re-
sulted in much shorter tracklets because they couldn’t han-
dle face occlusion, unlike the DPM model. In the videos,
faces would temporarily disappear due to the person turn-



ing their head too far, a hand covering their face, or other
forms of occlusion. In these instances, the CNN and HOG
face detectors would not detect a face in that frame and due
to how our tracklets are built, the tracklet would be termi-
nated. On the other hand, the DPM framework would still
be able to detect the person because although the face might
be occluded, other body parts may still be visible and thus
the tracklet won’t be terminated. The longer the tracklet is,
the more facial variation there is for the feature extractor
to capture, thus resulting in better linking performance. On
top of all that, the HOG model was unable to reliably detect
faces when only a side of a face was visible. This resulted
in shorter tracklets because tracklets would be terminated
when a person turned their head.

4.3.2 Clustering

The WCP scores for the CNN and HOG face detectors, as
shown in Table 2a, are, on average, significantly higher than
Lin and Hung’s score despite the overall poor performance
by the CNN and HOG face detectors. This is because of a
limitation in the way we labeled our detections. We used an
intersection over union distance measurement to calculate
the distance between a predicted bounding box and the
ground truth box in the frame, and if they were close
enough, we labeled the detection with the identification of
the corresponding ground truth. If the distance between the
detection and ground truth box was above a threshold, then
no identification was given to the detection. Our model
tracks the people in the audience or background of the
music videos and our labeling algorithm tries to give every
detection an identity, so some faces in the background were

Figure 3. Examples of successful re-identification after occlusion
and after camera angle switches.

Table 1b: Average CLEAR MOT Metrics. Varying Feature Extractor

Model Recall | |Precision {| F1 1 FAF | MOTA MOTP |

DPM & 78.1 87.4 17.2 0.283 62.4 421
ResNet

DPM & 76.6 88.9 159 0.311 72.3 471
VGG

DPM & 73.9 824 19.2 0.404
SENet

54.0 4.1

Lin & 817 90.2 85.3 027 69.2 86.0
Hung

Table 2b: WCP Scores. Varying Feature Extractor
Model Westlife Pussycat Hello Girls Aloud
Dolls Bubble

DPM & 0.895 0.868 0.982 0.904
ResNet

DPM & 0.933 0.876 0.794 0.890
VGG

DPM & 0.875 0.847 0.807 0.829
SENet

Lin& 0.86 0.79 0.70 0.92
Hung

Table 3: DPM CLEAR MOT Metrics

Video Recall | | Precision {|F1 f FAF | MOTA { MOTP {
Apink 60.8 94.8 17.6 0.0589 55.3 33.0
Bruno Mars | 72.7 87.9 12.8 0362 58.9 43.0
Darling 92.7 91.2 113 02144 79.3 434
Girls Aloud | 87.9 96.3 13.5 0.3224 57.0 46.4
Hello 71.2 96.9 16.6 0.0382 66.2 37.3
Bubble

Pussycat 71.0 85.4 21.1 0.3224 57.0 46.4
Dolls

Westlife 81.5 70.1 19.1 0.7302 45.6 437

given the identity of the main singers. This can raise WCP
scores because if these mislabeled faces are in the clusters
of the main singers, then the cluster would be given a
higher purity score because there would appear to be more
faces from the same person.

Furthermore, because the ground truth only had bounding
boxes for a few people in the videos, the WCP score was
only calculated on a handful of clusters, namely the clusters
tracking the main singers. Clusters that were tracking the
people in the background will have faces that don’t have
identities because their intersection over union distance
was too high, and thus these clusters won’t contribute to
the WCP score; without identifications and labels, there
is no way to tell how many faces in a cluster are from
the same person. Therefore, the high WCP score doesn’t
necessarily represent the model’s results as a whole. If we
were to annotate every detection by hand and gave each
face a proper identity, we expect our WCP scores to be
more accurate and reflective of our model’s performance.
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Figure 4. Top images visualize DPM detections. Bottom images
demonstrate effectiveness of DPM in creating longer tracklets.

4.4. Varying Feature Extractor

Table 1b and 2b demonstrate that several different neural
network feature extractors produce slightly different results.
As stated earlier, our goal is not to explain these disparities,
but rather to show that changing the neural network used
has far less of an effect than changing the face or body
part detector used to generate tacklets. In general, there
wasn’t much variation in the scores between feature extrac-
tors; most of the scores were relatively similar. However,
as seen previously, varying our face or body part detector
resulted in significantly different results. We can then con-
clude that the most influential step in our framework is in
fact the tracklet generating step.

4.5. Qualitative Results

From Figure 3, we can see that our model does a good
job in re-identifying faces and linking tracklets. In the top
six images of Figure 3, despite the singer’s hand occlud-
ing her face and the camera changing to a different shot
and back, which terminated tracklets, our framework was
still able to successfully link these tracklets and correctly
identify the singer. The bottom six images of Figure 3
also demonstrate this. Figure 4 shows how much better the
DPM framework performs compared to the CNN and HOG
framework. In the second and third frame on the bottom, the
singer’s hand occludes her face and for the CNN and HOG
face detector, this would have terminated the tracklet. How-
ever, the DPM was able to use other parts of the singer’s
body to continue the tracklet. Overall, our framework was
able to generate invariant face identities and reliably track
them across different shots in the unconstrained videos.

5. Weaknesses of Model

The top three images in Figure 5 show a weakness of
our model. Those three images are consecutive frames of
the same video and the faces in those frames are in roughly
the same position. Due to how we generate tracklets, those
three faces are placed into the same tracklet and this is not
ideal because those faces belong to three different people.
Because we have multiple people in the same tracklet, the
feature extractor extracts from three distinct people which
makes linking frames difficult. Situations like these are
very difficult for our model to handle.

The performance of our model depends heavily on
the quality and length of the tracklets we generate. Videos
with very frequent camera shot changes or videos with
objects that temporarily occlude the entirety of a person,
such as in the bottom three images of Figure 5, lead to
short tracklets that result in low quality feature extraction
and thus poor linking. Videos with these properties are also
very difficult for our model to handle.

The quality of the input video also plays a big role in
the performance of our model. Original video files must
be converted to a sequence of images representing frames,
however, despite using software that advertised lossless
conversion, we noticed that the frames still had noticeably
less quality than the original video. Lower quality images
make it difficult to reliably detect faces in frames and this
results in lower quality tracklets and linking. Therefore,
poor video quality leads to poor performance; high quality
videos are highly recommended.

6. Conclusion

Using a DPM, like Lin & Hung used, we were able to
approximately replicate the results of the paper. We con-
clude that the deformable parts model has strong advantages
over using convolutional neural network and histogram of
oriented gradients face detectors in building tracklets based
on overlap algorithm. The deformable parts model creates
longer tracklets and this proves to be very influential in the
results of the model because the longer the tracklets are, the
greater the number of possible facial variations of each per-
son can be captured, thus improving the linking. We noticed
that changing the feature extractors displayed less variance
than changing the face or body part detectors, demonstrat-
ing that the most important part of the model is the tracklet
generation. Furthermore, results had a strong dependence
on the properties of the video that the system was run on.

7. Painpoints and Bottlenecks

A major pain point and limitation that hindered our
progress was our access to computational resources. Due

Figure 5. Examples demonstrating challenging video properties.



to budgetary constraints, we were limited to using free re-
sources such as Google Colab. Although Google Colab ap-
pears to have sufficient hardware, such as a powerful GPU
and CPU, if a task is being run for an extended period of
time, Colab will throttle the performance of the GPU, mak-
ing it extremely slow and ineffective. Because of our lack
of access to a strong GPU, we were limited in the scope
of our dataset and were only able to use a relatively small
fraction of the video frames to run our framework on. Our
lack of access to hardware also placed constraints on the
face detectors and feature extractors that we could use; for
example, we weren’t able to use more powerful face detec-
tors, like MTCNN, because we didn’t have the computa-
tional resources to run it on a significant number of frames.
Instead, we opted for lighter face detectors that did not per-
form as well. Strong face detection and feature extraction is
instrumental in the performance of our framework.
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